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Presentation Summary
• High-Temperature Electronics Design 

Challenges
• Candidate ADC Topologies 
• Σ∆ ADC Overview
• Integrated Circuit Fabrication Processes & 

Temperature Limitations
• SOS Σ∆ Modulator Examples
• Conclusion
• Ongoing Research Areas
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Precision Analog Design For High 
Temperature Applications Is Very Challenging

• Device Degradation With Increasing Temperature
– Threshold voltage (Vt) shift
– Mobility reduction (gm degradation)
– Increased parasitic leakages
– Increased device noise

• Increased Power Consumption
• Reliability Issues

– Metal Electromigration
– Packaging
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Comparison of Si-Based Fabrication 
Processes For High-Temperature Application

Bulk CMOS
• T  200°C
• Mature 
• Many Foundries
• Inexpensive

Silicon Carbide (Si-C)
• T  600°C
• Maturing
• Very Limited Availability
• Very High Cost

SOI/SOS Technologies Provide a Mature, Commercially Available 
Technology With Acceptable Temperature Performance

Silicon-on-Insulator (SOI) – Silicon-on-Sapphire (SOS)
• T  350°C (500 °C reported)
• Fairly Mature
• Available 
• Moderate Cost
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ADC Topology Overview –
Speed & Resolution Tradeoff

Throughput
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Nyquist Rate Converters Are Limited to ~15 bits
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• Input Signal is Heavily Oversampled 
• Quantization Noise is Shaped to Suppress the Noise Component in the 

Input Signal Bandwidth
• Digital Filter Recovers the In-Band Signal and Down-Samples to the 

Nyquist Rate 

Σ∆Σ∆Σ∆Σ∆ ADCs Employ Oversampling, Noise Shaping, and 
Digital Filtering to Produce High-Resolution Results

A Low-Speed, High-Resolution Output Is Obtained Using A 
High-Speed, Low-Resolution Sampler
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Σ∆ Converters - Oversampling & 
Noise Shaping Advantages

High-Resolution Results Are Obtained Using Low-
Resolution Circuit Blocks
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Published SOS/SOI Modulators (1988-present)

• ~1800 Σ∆Σ∆Σ∆Σ∆-related papers in bulk-CMOS
• Only 6 papers reporting Σ∆Σ∆Σ∆Σ∆ modulators in SOS or SOI

– 1st-2nd and 4th order modulators reported
– Up to 15-bit resolution
– Temperatures up to 350ºC (with degraded resolution)

Reference T Resolution DOR Power Process / Supply Architecture OSR Internal 
(C) (bits) (S/s) (mW) Resolution

Viviani96 27 9.3* 781 0.06 3µm SOI-CMOS / 2V 1st order 128 1-bit
350 4.7* 3906 0.5 3µm SOI-CMOS / 2V 1st order 128 1-bit

Viviani99 30 11 15625 --- SOI-CMOS / 5V 2nd order 64 1-bit
250 10 15625 --- SOI-CMOS / 5V 2nd order 64 1-bit
300 9 15625 --- SOI-CMOS / 5V 2nd order 64 1-bit

Swaminathan99 27 8* 400000 0.3 0.25µm SOI-CMOS / 1V 2nd order 125 1-bit
Edwards99 27 9.7 126000 --- 1.5µm SOS-CMOS / 5V 1st order 128 4-bit
Ericson02 27 15.4 2000 25 0.5µm SOS-CMOS / 3.3V 2nd/4th order 256 1-bit

150 14.7 2000 25 0.5µm SOS-CMOS / 3.3V 2nd/4th order 256 1-bit
200 13.4 2000 27 0.5µm SOS-CMOS / 3.3V 2nd/4th order 256 1-bit

Literature Review (1988-present)
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Σ∆ Modulator Design Example

2nd- and 4th-Order Σ∆Σ∆Σ∆Σ∆ Modulators 
Fabricated in 3.3V 0.5µµµµm SOS-CMOS for 

High-Temperature Applications

(Proceedings of the 2002 IEEE International SOI 
Conference, Williamsburg, VA, Oct. 2002.)
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• Cascaded architecture is conditionally stable
• Gain settings selected to maximize tolerance of 

capacitor mismatch

• 4th-order noise 
shaping  (L=4)

• Oversampling ratio 
= 256 (M=256)

• Single-bit internal 
quantization (N=1)

• fs = 512kHz
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Ideal Transfer Function

Selection of the Modulator Architecture was 
Performed to Optimize High Temperature Operation
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Digital Noise Cancellation

• Implemented as delay, shift, and adder functions
• Coefficients d0 and d1 determined by integrator gains
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2-2 Cascade Modulator –
Switched Capacitor Diagram
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Device Characterization Over Temperature 
Is Critical In High-Temperature Precision 

Converter Design

Packaging & Implementation of Support Circuits is a Significant 
Challenge in High-Temperature Testing
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Vendor Supplied Design Models Are Inadequate 
For High-Temperature Simulations (T>150°C)
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Custom ORNL-Designed 2nd- & 4th-Order 
Σ∆ Modulator ASIC

•Features
–2nd- & 4th-Order 
Modulators

–Fully Differential
–Input Voltage Range        
± 0.5V (2V Diff) or             
± 0.25V (1V Diff)

–3.3V Supply
–~ 3.5mm X 3.5mm
–0.5µm SOS (Peregrine)

sdmod4_chip
(68-pin J-LDCC Package)
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Custom Modulator Test System

Data Acquisition System
• LabView-based Control Program
• Automated Input Signal Amplitude, 

Frequency, & Temperature Sweeps
• Up to 2048K bits/channel/run (2 

channels)
• FFT Display With FFT Averaging
• SNR, SNDR, THD, DR Calculation
• Very Low Distortion Sine Wave 

Generator
• Instruments Utilize GPIB Interface
• Environmental Chamber (Up to 300ºC)
• Designed for Both Circuit Optimization 

and Fully Automated Data Acquisition
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Performance Parameters Calculated from the 
Modulator FFT Data

• Signal-to-Noise Ratio (SNR)

• Signal-to-Noise+Distortion Ratio (SNDR)

• Total Harmonic Distortion (SNR)

• Dynamic Range (DR)
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LabView-Based Data Acquisition 
Software
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Measured Modulator Spectra Vs. Temperature
(2nd-Order, fin=36.6Hz, chip2)

• No significant 60 Hz components observed
• Harmonic distortion observed only at high 

temperature for near full-scale inputs
• Noise floor is 1/f dominated

T=25ºC T=150ºC T=200ºC
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Modulator Measurement Results –
SNR vs. T

2nd Order

4th Order

fin=36.6Hz fin=144Hz fin=950Hz

Reduction in SNR with increasing temperature 
follows increase in noise floor
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Modulator Measurement Results -
THD vs. T (fin=144Hz)

2nd-order, Chip 2

2nd-order, Chip 4

4th-order, Chip 2

4th-order, Chip 4
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Σ∆ Modulator Test Summary

Sampling Rate 512kHz 
Oversampling Ratio 256 
Digital Output Rate 2kS/s 

Differential Input Range 2V 
Power Dissipation 32.5mW 

Active Area ~9mm2 
Technology 0.5µm SOS-CMOS 

 

Parameter  T=25°C 
(2nd / 4th) 

T=150°C 
(2nd / 4th) 

T=200°C 
(2nd / 4th) 

Peak SNR [dB] 92.7 / 92.4 86.9 / 86.9 81.1 / 81.1 
Res. [bits] 15.5 / 15.3 14.9 / 14.5 13.5 / 13.3  

Peak SNDR [dB] 92.3 / 92.1 86.7 / 86.6 80.6 / 80.6 
THD [dB] -103/ -103 -94 / -99 -90 / -94 
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Testing Initiated On Two New 
ORNL-Designed Σ∆ Modulators

sdmod4_chop2 ASIC
• Low Noise Integrator 

Amplifier
• 1/f Noise Reduction 

Method - Chopper

sdmod4_cds1 ASIC
• Low Noise Integrator 

Amplifier
• 1/f Noise Reduction 

Method – Correlated 
Double Sampling (CDS)

2nd-Order Loop 1

2nd-Order Loop 2
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sdmod4_cds1 ASIC 
Preliminary Test Results
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Initial Testing Indicates Significant Improvement 
In High-Temperature Performance
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An SOS Digital Filter Has Been 
Fabricated And Is Under Evaluation
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High-Precision Data Conversion at 
Elevated Temperatures is Attainable With 
Proper Selection of the ADC Architecture 

and the IC Fabrication Process

Conclusion

• Select an ADC Topology That Is Tolerant of 
Temperature-Induced Component/Circuit Errors → Σ∆

• Utilize a Fabrication Technology With Adequate 
Device Performance & Survivability – SOI/SOS – SiC?
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Ongoing Research at ORNL Is Directed 
Towards Improved High-Temperature Circuits

• High-Precision, Wide-Temperature Voltage 
References

• High-Temperature Device/Circuit 
Characterization & Modeling (300°C)

• Improved Tools For Σ∆ Modulator Simulation
• Development of Additional Circuit Functions in 

SOS/SOI For High-Temperature Applications
• Pursue Collaborations in Si-C Research 


